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Parent–martensite interface structure in ferrous systems
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Abstract

Recently, a Topological Model of martensitic transformations has been presented wherein the habit plane is a semi-
coherent structure, and the transformation mechanism is shown explicitly to be diffusionless. This approach is used here
to model martensitic transformations in ferrous alloys. The habit plane comprises coherent (111)ck(011)a terraces where
the coherency strains are accommodated by a network of dislocations, originating in the martensite phase, and disconnec-
tions (transformation dislocations). The disconnections can move conservatively across the interface, thereby effecting the
transformation. Since the disconnections exhibit step character, the overall habit plane deviates from the terrace plane. A
range of network geometries is predicted corresponding to orientation relationships varying from Nishiyama–Wasserman
to Kurdjumov–Sachs. This range of solutions includes habit planes close to {295}, {575} and {121}, in good agreement
with experimental observations in various ferrous alloys.
� 2007 Elsevier B.V. All rights reserved.

PACS: 61.50.Ks; 81.30.�t; 68.35.�p; 61.72.�y; 68.35.Dv; 68.37.Lp
1. Introduction

Martensitic transformations are important in a
wide range of engineering materials [1] and research
in this field has a long history. In the 1950s WLR [2]
and BM [3] developed a treatment of the crystallog-
raphy of martensitic transformations and its predic-
tions are in good agreement with experimental
observations for several transformations. The theory
is phenomenological, often referred to as the ‘Phe-
nomenological Theory of Martensite Crystallogra-
phy’ (PTMC), so does not describe the underlying
mechanism of transformation at the atomic level.
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In the case of ferrous alloys, the PTMC has been
used successfully for transformations in high carbon
steels and FeNi alloys exhibiting habits near {295},
but is less satisfactory for {575} and {121} transfor-
mations in lath and plate martensites respectively [4].
An alternative approach has been developed recently
in terms of interfacial defects [5,6] and is referred to
here as the ‘Topological Model’ (TM). The TM is a
description of the structure of the parent–martensite
interface and the line-defects therein; the transfor-
mation proceeds by movement of transformation
dislocations, or disconnections [7] as they are
known, across the interface. This defect motion
produces the transformation shear and can be shown
explicitly to be diffusionless [8]. To date, the TM has
been applied successfully to transformations in a
TiMo alloy [5], ZrO2 [9] and PuGa [10]; the
.
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objective of the present work is to report progress
with transformations in ferrous alloys. The princi-
ples of the TM are set out in the next section, and
subsequently applied to ferrous alloys. Finally,
experimental observations of transformations in fer-
rous systems previously reported in the literature are
compared with the present modelling.

2. Topological procedures

By way of introduction to the physical principles
of the TM it is helpful to recall briefly the basis of the
PTMC. Underlying the PTMC is the hypothesis that
the habit plane is an invariant plane of the shape
transformation [2,3], so that the parent and martens-
ite crystals fit together there without strain. An algo-
rithm for determining this plane, the transformation
displacement and the orientation relationship (OR)
of the adjacent phases is expressed in terms of homo-
geneous deformations represented by matrices [11].
Thus, the principal concern in the PTMC is to find
a transformation interface that minimises the elastic
strain of the system. In the TM, one also seeks a
misfit-free habit plane, but explicit confirmation is
additionally required that this interface can migrate
without concomitant long-range diffusion. This lat-
ter requirement imposes severe constraints on dislo-
cation-based mechanisms and hence leads to a
practicable method for identifying possible transfor-
mation crystallography. Developments in disloca-
tion theory pertaining to these two aspects of the
TM, namely (i) glissile motion of disconnections in
interphase interfaces and (ii) misfit accommodation
in these interfaces, are reviewed briefly below.

The rules governing glide and climb of disloca-
tions in the bulk of single crystals are well known
[12]; glissile motion occurs when a dislocation
moves in a plane containing its line direction, n,
and Burgers vector, b. Otherwise, climb occurs,
requiring a flux of material to diffuse to or away
from a defect’s core. In the case of interfacial
defects, the situation is more complex because these
may exhibit step nature, with height h, in addition
to dislocation character – defects are characterised
by the couple (b,h). Also, the density and composi-
tion of the adjacent crystals may be different. Hirth
and Pond [13] showed that the diffusive flux accom-
panying motion of a unit length of interfacial defect
moving unit distance along an interface is deter-
mined by two terms. The first term is equal to the
product hDX, where DX represents the differential
atomic concentration of a given species in the parent
and martensite phases, and the second is bzX, where
bz is the component of b perpendicular to the inter-
face plane and X is the concentration in one of the
crystals [13]. The second term is directly analogous
to the single crystal case mentioned above; thus, if
the first term is zero, glide and climb of interfacial
defects is governed by the same rule as for single
crystals. This occurs, for instance, for defects with
h = 0, such as crystal or twinning dislocations from
either the parent or martensite phases. We adopt the
nomenclature of the PTMC for such defects, i.e.,
‘lattice-invariant deformation’ (LID). In the case
of disconnections, for which h is always finite, glis-
sile motion can only arise where the chemical com-
position of the two phases is identical and the two
terms above are equal and opposite. In other words,
glissile disconnection motion must conserve atomic
species, but not necessarily atomic volume as in
the single crystal case. This latter condition is only
fulfilled by disconnections in a restricted class of
interphase boundaries, the most important instance
being coherent interfaces [8,14]. Thus, a fundamen-
tal step in the TM of a transformation is to identify
a candidate interface between the phases that exhib-
its coherency; this is referred to as a terrace plane.
Feasible terrace planes in stiff engineering materials
are expected to have relatively modest coherency
strains. Once a terrace plane has been identified,
the set of LID, (b, 0), and glissile disconnections,
(b,h), that can arise therein can be determined using
the theory of interfacial defects [15].

The coherency strains arising at a terrace plane
must be relieved by arrays of interfacial defects.
An array of appropriately oriented and spaced glis-
sile disconnections can be one of these sets, and
synchronous motion of this set can thereby provide
the dual function of effecting the transformation
and partially relieving the coherency strain. The sec-
ond set of defects necessary for complete misfit relief
need not be glissile in the interface; however, they
will intersect the disconnection array, and these
intersections must not impede the glissile motion
of the former. In other words, the intersections must
themselves be glissile [16,17]; it has been shown that,
in general, this only arises if the second set is com-
prised of LID able to reach the interface by gliding
through the martensite phase. Thus, the parent–
martensite interface is envisaged as coherent ter-
races reticulated by arrays of disconnections and
LID (slip or twinning), as depicted schematically
in Fig. 1. Because of the step character of the
disconnections, the overall interface plane, or habit



Fig. 1. Schematic illustration of a parent–martensite interface
showing the terrace segments and defect arrays. Coherently
strained terraces are reticulated by arrays of disconnections (b,h)
and crystal slip or twinning dislocations (b, 0) from the (lower)
martensite crystal.
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plane, deviates from the terrace plane. At equilib-
rium, the spacing of the disconnections, dD, and
LID, dL, and their line directions, nD and nL, must
be adjusted until the misfit is fully relieved along
the habit plane.

The three stages for determining a misfit-relieved
glissile habit plane are summarised schematically in
Fig. 2.
Fig. 2. Schematic summary of the three stages in the topological
model for determining a misfit-relieved glissile habit plane,
transformation displacement and orientation relationship.
Stage 1: Reference states.
Initially, the two phases are juxtaposed with a

chosen OR and exhibiting their natural lattice
parameters – the natural reference state. Next, the
parent and martensite crystals are strained into
coherence on the terrace plane – the coherent refer-
ence state; the necessary deformations of the parent
and martensite crystals are represented by the matri-
ces cPn and cMn respectively. The total strain in the
terrace plane is then defined by

nEc ¼ ðcP�1
n � cM

�1
n Þ: ð1Þ

This can be expressed using the terrace plane coor-
dinate frame as

nEc ¼
exx 0 0

0 eyy 0

0 0 0

0
B@

1
CA; ð2Þ

where exx and eyy are the principal strains in the ter-
race plane. Alternative natural reference states can
be chosen where the two crystals are respectively
rotated by the angles ±x/2 about the normal to
the terrace plane, represented by the matrices R+

and R�.
Stage 2: Interfacial defects.
The set of LID and disconnections that can arise

in the coherent reference state are determined using
the topological theory of interfacial defects [15].
From this set, the subset of disconnections (b,h)
that are glissile in the terrace plane can be deter-
mined, and also the slip or twinning LID systems
that do not form sessile intersections with the
disconnections.

Stage 3: Interface structure and transformation
crystallography.

The first step in this final stage is to determine the
line directions and spacings of the arrays of discon-
nections and LID that accommodate the coherency
strain. These are related to the coherency strains by
the Frank–Bilby equation [18]; if the strains defined
in Eq. (1) are elastic and are relieved plastically by
defect arrays, and any supplementary rotation is
also accommodated by defects, we have

B ¼ ð�nEc þ RÞv ¼ Fv; ð3Þ

where B is the total Burgers vector crossed by a
probe vector v lying in the interface, and

R ¼ ðR�Þ�1 � ðRþÞ�1
: ð4Þ

The matrix (�nEc + R), designated F, defines the
closure failure of a Burgers circuit associated with



Fig. 3. Schematic illustration showing the natural reference state
formed by a and c crystals exhibiting the NW OR viewed
perpendicular to (111)ck(011)a; the lattice sites are depicted in
white, c, and black, a, forming a dichromatic pattern.
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the vector v. The individual disconnections and dis-
locations cut by v have topological parameters
(b,h) and (b, 0) defined in the coherent dichromatic
pattern. Eq. (3) cannot be solved directly because
the habit plane orientation is not known at this
stage, and hence v cannot be defined. A practicable
way forward is to find an approximate solution first
and subsequently refine this iteratively. Approxi-
mate solutions can be found by neglecting the step
character of disconnections, so the interface is imag-
ined to be parallel to the terrace plane; Eq. (3) can
then be applied to find a disconnection/LID network
accommodating the coherency strain. To refine this
solution, the re-oriented interface can be found when
the step character of the disconnection array in the
approximate solution is taken into account. Then,
new probe vectors can be used in Eq. (3), and the de-
fect line directions and spacings modified as required
until the misfit on the final habit plane is fully re-
lieved. This procedure has been described in detail
elsewhere [6,19] for the cases of a TiMo alloy and
ZrO2. Once a refined solution is obtained, the final
OR, which generally deviates from the natural refer-
ence OR, can be determined. Also, the transforma-
tion displacement, which convolutes the lattice
deformation introduced by disconnection motion,
the shear introduced by the LID and any deviation
of OR from the natural reference, can be found.
Fig. 4. Schematic illustration of the coherent dichromatic
pattern; the b of candidate disconnections, joining sites of
opposite colour, and LID, joining sites of the same colour, are
also shown.
3. Interface structure in ferrous alloys

Stage 1: Reference structures.
A convenient choice of natural reference

structure for c-FCC and a-BCC crystals is the
Nishyama–Wassermann (NW) OR [20,21], as
depicted schematically in Fig. 3. In this OR the clos-
est-packed planes of the two phases are parallel, i.e.
(111)ck(011)a; these are potential terrace planes
and the axes of the terrace coordinate frame are indi-
cated in the figure. The lattice parameters of the
cubic crystals used in this work are ac = 0.3580 nm
and aa = 0.2870 nm, leading to misfit parallel to x,
y and z.

The misfit parallel to x and y is now removed by
the coherency strain, thereby forming the coherent
reference, and the corresponding dichromatic pat-
tern is depicted in Fig. 4. The strain is given by

nEc ¼
�0:1254 0 0

0 0:0772 0

0 0 0

0
B@

1
CA; ð5Þ
and we note that the sign of exx is negative corre-
sponding to compression of a with respect to c,
whereas eyy is positive. These principal strains are
further depicted in Fig. 5; the rhombi delineating
the atomic sites on the (111)ck(011)a planes in the
unstrained and coherent states are shown.

Stage 2: Interfacial defects.
The elastic strain defined above is relieved plasti-

cally by incorporation into the interface of admissi-
ble interfacial defects. Their Burgers vectors and
step heights are conveniently illustrated in the
coherent dichromatic pattern, Fig. 4. Slip disloca-
tions of the martensite have b corresponding to
black-to-black translation vectors, t(a), for example



Fig. 5. Scale drawing of the atomic rhombi in the terrace plane of
a ferrous alloy. Full lines represent the unstrained martensite,
dashed lines the unstrained parent crystal, and bold lines the
coherent state.
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b(i) and b(ii) are derived from 1
2
½1�11�a and 1

2
½�1�11�a

respectively; these dislocations do not exhibit step
character when embedded in the terrace plane. Dis-
connections have b corresponding to black-to-white
vectors, t(c) � t(a), in a dichromatic pattern, and
three examples are depicted in Fig. 4 and their
parameters are listed in Table 1. One is designated
b�1/�1 to indicate that its step goes downwards into
the (lower) martensite crystal by one (111)c and one
(011)a plane, the second has a step twice this height,
and the third has a step of opposite sense to the first;
the magnitudes of these Burgers vectors relative to
jb(i)j are 0.78, 0.61 and 0.28 respectively. A sche-
matic illustration of b�1/�1, b�2/�2 and b+1/+1

disconnections is shown in Fig. 6; for clarity, the
line direction of these defects is taken to be
½�101�c=½�1�1 1�a, so they exhibit mixed character in
the figure. These are glissile in the terrace plane
despite their components bz. In the coherent state,
the number of atoms per unit area of the (111)c
and (011)a planes are equal, so motion of discon-
nections across the terrace plane conserves the num-
ber of atoms, but does not conserve volume because
the inter-planar spacings of the (111)c and (01 1)a
planes are not equal. This glissile motion can be
Table 1
Topological parameters of interfacial defects

bx (nm) by (nm) bz (nm)

b(i) 0.135 �0.211 0
b(ii) �0.135 �0.211 0
b�1/�1 �0.135 �0.141 �0.004
b�2/�2 �0.135 �0.070 �0.008
b+1/+1 0 0.070 0.004

a The ‘overlap’ step height, h, is defined as the smaller of the terrace
confirmed by using the analysis of Hirth and Pond
[13] outlined above. Intersections of b�1/�1 and
b�2/�2 disconnections with b(i) and b(ii) slip disloca-
tions for example are glissile [17]. Similarly, intersec-
tions of b+1/+1 disconnections with twinning
dislocations such as 1

6
½1�1 1�a and 1

6
½�1�11�a are glissile.

Stage 3: Misfit relief.
The first step is to find a network comprising one

array of LID and a second array of disconnections
that accommodates the misfit on the terrace plane.
For this ‘unrefined’ stage, the small components bz

of the disconnections are suppressed temporarily
(these produce small ancillary tilts about the defect
line, and do not produce long-range displacement
fields). Solutions can then be found using the
Frank–Bilby equation in expression 3 for the NW
OR, or alternative natural reference states with
finite values of x. The spacing of the disconnections,
dD, and LID, dL, and their line directions, nD and
nL, are treated as variable quantities in order to find
solutions. A practicable procedure is as follows;
since two arrays are present it is possible to choose
a probe vector vD parallel (or anti-parallel) to nD

that intersects only LID, and similarly a vector vL

parallel (or anti-parallel) to nL, cutting only discon-
nections. Thus, in the former case, the Burgers vec-
tor cut per unit length, BL, can be expressed as

BL ¼ bL sinðhD � hLÞ
dL

ð6aÞ

and in the latter as

BD ¼ bp=q sinðhD � hLÞ
dD

; ð6bÞ

where hD and hL are the angles subtended by nD and
nL from the positive x axis. Eq. (3) can now be
expressed as

vD ¼ F�1BL; ð7Þ
and similarly for vL. Thus, both the directions and
magnitudes of vD and vL can be determined, hence
ha t(c) t(a)

0 – 1
2 ½1�11�a

0 – 1
2 ½�1�11�a

�1 1
2 ½�1�10�c 1

2 ½1�1�1�a
�2 1

2 ½�2�1�1�c ½0�1�1�a
+1 1

2 ½011�c 1
2 ½�111�a

plane spacings, i.e. (011)a in the present case.



Fig. 6. Schematic illustration of (a) b�1/�1, (b) b�2/�2 and
(c) b+1/+1 disconnections in the coherent reference interface
viewed along ½�101�c=½�1�11�a. Lateral motion of these defects
would cause transformation in a conservative manner. The
symbols represent site levels along [111]c/[011]a as in Fig. 4.

Table 2
Network parameters for b(i) LID and b�1/�1 disconnections

x (�) hL (�) dL (nm) hD (�) dD (nm) w (�)

0 59.43 2.319 111.50 1.670 6.93
0.5 60.82 2.520 113.93 1.571 7.36
1.0 62.47 2.757 116.08 1.481 7.80
1.5 64.47 3.039 118.00 1.399 8.26
2.0 66.92 3.381 119.71 1.324 8.72
2.5 69.98 3.801 121.25 1.256 9.18
3.0 73.90 4.320 122.64 1.193 9.65
3.5 79.02 4.969 123.89 1.137 10.12
4.0 85.87 5.775 125.03 1.084 10.60
4.5 95.18 6.736 126.07 1.037 11.08
5.0 107.70 7.745 127.03 0.992 11.56
5.26 115.73 8.200 127.50 0.971 11.81
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giving the unit vectors nD and nL (from which hD

and hL are found) and the separations dD and dL.
Network parameters, hL, dL, hD and dD for the
range of ORs from NW to the KS variant where
½�101�c is parallel to ½�1�11�a[22], i.e. x = 0� to 5.26�,
are listed in Table 2 for b(i) and b�1/�1 defects,
and a schematic illustration of the network for
x = 2.5� is shown in Fig. 7(a). The network param-
eters for b(i) LID and b�2/�2 disconnections are
listed in Table 3 and the network for x = 2.5� is
depicted in Fig. 7(b). Parameters for the case where
the LID is ð112Þa; 1

6
½�1�11�a twinning are shown in

Table 4, and a network corresponding to x = 0.9�
is depicted in Fig. 7(c). Twinning dislocations are
taken to be individually spaced by dL in this figure
rather than bunched into twins; the twin fraction
corresponding to the same defect density can be
readily determined.

The first stage of refinement for the solutions
described above is to introduce the step character
of the disconnections and hence define the provi-
sional habit plane. The normal to this plane is deter-
mined by rotating the normal to the terrace plane by
the angle w ¼ tan�1 h

dD about an axis parallel to nD

and the values so obtained are included in Tables
2–4. The habit planes for the configurations
depicted in Fig. 7, expressed in the parent crystal
frame, are (0.505 0.700 0.505)c, (0.382 0.841
0.382)c and (0.129 0.774 0.620)c respectively. Fur-
ther refinement would require the bz components
of the disconnections to be re-instated and the
defect content on the habit plane determined using
probe vectors in that plane. At equilibrium, the mis-
fit along this plane must be accommodated by the
defect network, and further adjustments of defect
line directions and separations may be needed.
Defect content with resultant component of B per-
pendicular to the final habit plane does not affect
misfit-relief; it acts as a low-angle tilt boundary
thereby introducing an ancillary change in the
OR. This refinement procedure for ferrous alloys
will be reported fully in a later paper.



Fig. 7. Schematic illustration of defect networks (a) b(i) LID and
b�1/�1 disconnections for x = 2.5�, (b) b(i) LID and b�2/�2

disconnections for x = 2.5� and (c) ð112Þa; 1
6
½�1�11�a LID and

b+1/+1 disconnections for x = 0.9�.

Table 3
Network parameters for b(i) LID and b�2/�2 disconnections

x (�) hL (�) dL (nm) hD (�) dD (nm) w (�)

0 40.24 2.784 111.50 1.336 16.89
0.5 37.93 3.057 113.93 1.257 17.90
1.0 35.11 3.382 116.08 1.185 18.91
1.5 31.64 3.772 118.00 1.119 19.94
2.0 27.27 4.242 119.71 1.059 20.97
2.5 21.72 4.805 121.25 1.004 22.22
3.0 14.55 5.463 122.64 0.955 23.03
3.5 5.31 6.185 123.89 0.909 24.06
4.0 �6.33 6.864 125.03 0.868 25.07
4.5 �20.11 7.301 126.07 0.829 26.08
5.0 �34.79 7.305 127.03 0.794 27.08
5.26 �42.30 7.121 127.50 0.776 27.60

Table 4
Network parameters for ð112Þa; 1

6
½�1�11�a LID and b+1/+1

disconnections

x (�) hL (�) dL (nm) hD (�) dD (nm) w (�)

0 90 0.359 68.50 0.334 31.28
0.5 93.98 0.358 71.26 0.356 29.70
0.9 97.14 0.356 73.73 0.375 28.44
1.5 101.80 0.352 77.95 0.405 26.60
2.0 105.56 0.346 82.01 0.433 25.13
2.5 109.14 0.339 86.64 0.461 23.75
3.0 112.67 0.331 91.87 0.490 22.50
3.5 115.99 0.323 97.75 0.517 21.42
4.0 119.12 0.314 104.24 0.541 20.56
4.5 122.08 0.304 111.26 0.559 19.95
5.0 124.86 0.295 118.64 0.569 19.63
5.26 126.26 0.290 122.61 0.570 19.58
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4. Discussion

The TM of martensitic transformations is based
on the principles of dislocation theory, incorporat-
ing properly defined reference states and rigorously
determined defect content. It provides a physical
understanding of processes wherein a misfit-relieved
interface can migrate in a diffusionless manner to
effect a transformation. Unlike the PTMC, where
the interface is a geometrically invariant plane, the
TM interface comprises a coherent terrace with an
array of LID and disconnections superimposed to
relieve misfit. Thus, the TM indicates that the struc-
tures of martensitic interfaces are closely related to
other semi-coherent interphase interfaces [23,24],
but exhibit the special property of glissile disconnec-
tions; coherency of the terrace planes is seen to be
essential in this context.

The LID and disconnections predicted in the
present work are predominantly screw in character,
in contrast with misfit-relieving configurations
involving edge disconnections, as discussed for
example by Rigsbee and Aaronson [25] and Mori-
tani et al. [26]. Thus, the networks predicted here
accommodate misfit on the habit plane of martens-
ite in a manner reminiscent of screw dislocation net-
works in grain boundaries between orthorhombic
crystals as discussed by Matthews [27]. Similarly
to the grain boundary case, superimposing an addi-
tional twist misorientation, x, has the effect of
increasing the spacing of one set of defects in the
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network, i.e. either dL or dD, and decreasing the
spacing of the other set, as shown in Tables 2–4
and Fig. 7. Therefore, for each of the LID/discon-
nection combinations chosen here, the TM predicts
a range of interface structures consistent with the
Frank–Bilby equation and having ORs across the
range from NW to KS. In all cases the terrace seg-
ments between the defects are coherent, resembling
Fig. 4, and the macroscopically determined OR
inter-relates the bulk crystals beyond the short-
range interfacial displacement field. Optimal struc-
tures cannot be identified using geometric criteria
alone; energetic and kinetic arguments are needed
to resolve this point. A further consideration is that
multiple LID modes might operate, as has been pro-
posed by Kelly [28] for example.

Transformation kinetics can also be addressed
once a model of the transformation mechanism is
established [23]; for the TM, the rate of trans-
formation would be determined primarily by the
thermodynamic driving force and the mobility of
disconnections. The latter is likely to depend on
their screw/edge character, the extent of C-pinning,
and the complexity of atomic shuffling accompany-
ing disconnection motion [29].

In our earlier work on TiMo [5], nL was taken as
being the intersection of the active slip or twinning
plane with the habit plane, as depicted in Fig. 1.
An important feature of ferrous alloys is that
1
2
½1�11�a and 1

2
½�1�11�a dislocations are glissile in the

terrace plane and hence may be able to adjust their
line directions after reaching the interface. Thus, in
the present work, nL is treated as a variable quan-
tity. Of course, for the case of ð11 2Þa; 1

6
½�1�11�a twin-

ning in ferrous systems, viable solutions are
anticipated to have nL close to the intersection of
the active twinning plane with the habit plane.

Although the habit plane structures reported
here are not fully refined, the provisional structures
show good agreement with experimental observa-
tions in the literature. For example, Sandvik and
Wayman [30] and Kelly et al. [31] studied lath
martensite in an FeNiMn alloy using transmission
electron microscopy (TEM). They observed an
array of 1

2
½1�1 1�a LID dislocations with dL in the

range 2.6–6.3 nm, nL varying between 10� and 15�
from screw orientation in a habit plane with
w = 9.45�, and x ranging between 0.16� and 3.16�.
This observation resembles closely the array of b(i)

and b�1/�1 defects predicted here (Table 2 and
Fig. 7(a)) for x = 2.5�, namely: dL = 3.77 nm, nL

oriented 12.99� from screw orientation and habit
plane very close to (575). Re-instating the small
components of bz for the b(i) and b�1/�1 defects pro-
duces additional tilts, uL and uD, about nL and nD

respectively, where uL = ��0.54� and uD =
�0.14� in this case; these contributions slightly
modify the OR, misaligning the (111)c and (011)a
planes for example.

Moritani et al. [26] studied plate martensite in an
FeNiMn alloy, and observed an array of 1

2
½1�11�a

LID dislocations with spacing dL = 4.8 nm with nL

close to pure-screw orientation in a habit plane with
w = 19.47� and x = 1.56�. This observation resem-
bles the array of b(i) and b�2/�2 defects predicted
in Table 3 for x = 2.5�, Fig. 7(b), namely:
dL = 4.805 nm, w = 22� and nL inclined at 25.39�
to screw. The habit plane, for this stage of refine-
ment, (1, 2.2,1)c, is 2.5� from the experimental
observation, (121)c. In addition, they were able to
image the disconnection array using high-resolution
TEM. Images obtained with the beam direction
parallel ½�10 1�c closely resemble the defects in
Fig. 6(b), bearing in mind the screw component of
their Burgers vectors are not evident in such images.
Moreover, the average spacing dD observed experi-
mentally is in good agreement with the calculated
value of 1 nm for b�2/�2 defects. Mahon et al. [32]
and Ogawa and Kajiwara [33] also published images
of disconnection arrays in ferrous alloys; these too
are consistent with the defects illustrated in
Fig. 6(b). In this case uD = �1.19� about nD and
uL = ��1.01� about nL.

Several researchers have studied ferrous alloys
where the martensite plates exhibit habit planes with
orientations near {295}c or {31510}c [1,4,11]. The
substructures of these plates show internal twinning
on (112)a, h111ia. Using this LID mode, one of the
range of TM solutions listed in Table 4, i.e. that
with x = 0.9�, Fig. 7(c), is in reasonable agreement
with the experimental data. A more detailed com-
parison will be made once the TM structure has
been refined further.

5. Conclusion

Martensite in ferrous systems has been modelled
using the topological method; the interface is semi-
coherent and its migration, by lateral motion of
disconnections, is conservative and effects the trans-
formation. Dislocation theory has been applied
rigorously to find feasible interface structures,
although further refinement is needed to establish
the equilibrium forms. A variety of LID and discon-
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nections is viable in ferrous systems, giving rise to a
range of possible transformation crystallographies,
including solutions consistent with ‘(295)’, ‘(5 75)’
and ‘(1 21)’ habit planes.
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